Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or goes beyond human cognitive abilities across a wide variety of cognitive jobs. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that considerably goes beyond human cognitive capabilities. AGI is considered among the definitions of strong AI.
Creating AGI is a primary goal of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research study and development jobs throughout 37 countries. [4]
The timeline for attaining AGI remains a topic of continuous argument among researchers and experts. Since 2023, some argue that it may be possible in years or years; others maintain it may take a century or longer; a minority believe it may never be accomplished; and another minority declares that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed concerns about the rapid progress towards AGI, recommending it might be attained faster than many anticipate. [7]
There is debate on the specific meaning of AGI and concerning whether modern-day large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common subject in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many experts on AI have actually stated that mitigating the threat of human termination presented by AGI should be a global top priority. [14] [15] Others discover the advancement of AGI to be too remote to provide such a risk. [16] [17]
Terminology
AGI is likewise referred to as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic smart action. [21]
Some scholastic sources schedule the term "strong AI" for computer programs that experience life or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to resolve one specific issue however lacks general cognitive abilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the very same sense as humans. [a]
Related concepts consist of artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical kind of AGI that is a lot more typically intelligent than human beings, [23] while the notion of transformative AI relates to AI having a big influence on society, for instance, comparable to the farming or industrial revolution. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify 5 levels of AGI: emerging, proficient, specialist, virtuoso, and superhuman. For instance, a proficient AGI is defined as an AI that outshines 50% of experienced grownups in a large range of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined however with a limit of 100%. They consider big language models like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. One of the leading propositions is the Turing test. However, there are other widely known meanings, and some researchers disagree with the more popular approaches. [b]
Intelligence qualities
Researchers normally hold that intelligence is required to do all of the following: [27]
reason, use technique, solve puzzles, and make judgments under uncertainty
represent knowledge, including typical sense understanding
plan
discover
- communicate in natural language
- if required, incorporate these abilities in conclusion of any given objective
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) think about extra qualities such as creativity (the capability to form novel psychological images and principles) [28] and autonomy. [29]
Computer-based systems that exhibit much of these capabilities exist (e.g. see computational creativity, automated thinking, choice support system, robotic, evolutionary calculation, intelligent representative). There is debate about whether modern AI systems have them to a sufficient degree.
Physical qualities
Other capabilities are considered preferable in smart systems, as they may impact intelligence or help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and - the capability to act (e.g. relocation and manipulate things, modification location to explore, etc).
This includes the capability to find and react to risk. [31]
Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and control objects, modification location to check out, etc) can be preferable for some smart systems, [30] these physical abilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) may already be or end up being AGI. Even from a less positive viewpoint on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system is enough, offered it can process input (language) from the external world in location of human senses. This interpretation aligns with the understanding that AGI has actually never ever been proscribed a specific physical personification and therefore does not require a capacity for mobility or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests indicated to validate human-level AGI have actually been considered, consisting of: [33] [34]
The idea of the test is that the device needs to attempt and pretend to be a guy, by addressing questions put to it, and it will only pass if the pretence is reasonably convincing. A substantial part of a jury, who need to not be skilled about devices, need to be taken in by the pretence. [37]
AI-complete issues
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to resolve it, one would need to execute AGI, since the service is beyond the abilities of a purpose-specific algorithm. [47]
There are many issues that have actually been conjectured to need basic intelligence to solve along with human beings. Examples include computer system vision, natural language understanding, and dealing with unexpected circumstances while fixing any real-world issue. [48] Even a specific task like translation needs a device to check out and write in both languages, follow the author's argument (reason), comprehend the context (understanding), and consistently replicate the author's original intent (social intelligence). All of these issues need to be fixed concurrently in order to reach human-level maker efficiency.
However, numerous of these tasks can now be performed by contemporary big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on many criteria for checking out comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research study began in the mid-1950s. [50] The very first generation of AI researchers were convinced that artificial basic intelligence was possible and that it would exist in just a couple of years. [51] AI pioneer Herbert A. Simon wrote in 1965: "devices will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might create by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the job of making HAL 9000 as realistic as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the issue of producing 'artificial intelligence' will significantly be fixed". [54]
Several classical AI tasks, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being obvious that researchers had grossly undervalued the difficulty of the project. Funding agencies ended up being doubtful of AGI and put scientists under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a casual conversation". [58] In reaction to this and the success of expert systems, both industry and federal government pumped cash into the field. [56] [59] However, self-confidence in AI amazingly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever satisfied. [60] For the second time in twenty years, AI researchers who anticipated the impending accomplishment of AGI had been mistaken. By the 1990s, AI scientists had a credibility for making vain promises. They ended up being hesitant to make forecasts at all [d] and prevented reference of "human level" synthetic intelligence for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI attained commercial success and academic respectability by concentrating on particular sub-problems where AI can produce verifiable outcomes and commercial applications, such as speech acknowledgment and recommendation algorithms. [63] These "applied AI" systems are now used extensively throughout the innovation industry, and research in this vein is greatly funded in both academic community and market. As of 2018 [upgrade], advancement in this field was thought about an emerging pattern, and a fully grown stage was expected to be reached in more than 10 years. [64]
At the millenium, lots of traditional AI researchers [65] hoped that strong AI could be developed by combining programs that fix various sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to synthetic intelligence will one day satisfy the standard top-down path over half way, prepared to supply the real-world competence and the commonsense knowledge that has actually been so frustratingly elusive in thinking programs. Fully smart makers will result when the metaphorical golden spike is driven joining the two efforts. [65]
However, even at the time, this was challenged. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:
The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is actually only one feasible route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this route (or vice versa) - nor is it clear why we should even try to reach such a level, given that it looks as if arriving would just amount to uprooting our symbols from their intrinsic significances (thereby simply lowering ourselves to the practical equivalent of a programmable computer). [66]
Modern synthetic basic intelligence research study
The term "artificial basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the capability to satisfy objectives in a wide variety of environments". [68] This type of AGI, characterized by the capability to maximise a mathematical meaning of intelligence instead of exhibit human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of guest lecturers.
As of 2023 [update], a small number of computer system scientists are active in AGI research study, and many add to a series of AGI conferences. However, increasingly more scientists have an interest in open-ended learning, [76] [77] which is the concept of enabling AI to constantly learn and innovate like humans do.
Feasibility
As of 2023, the advancement and prospective accomplishment of AGI remains a subject of intense argument within the AI neighborhood. While traditional consensus held that AGI was a far-off objective, current advancements have led some researchers and industry figures to claim that early kinds of AGI might currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a guy can do". This forecast stopped working to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century because it would need "unforeseeable and essentially unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern computing and human-level synthetic intelligence is as large as the gulf in between existing area flight and practical faster-than-light spaceflight. [80]
A more obstacle is the absence of clarity in specifying what intelligence requires. Does it need awareness? Must it display the ability to set objectives in addition to pursue them? Is it purely a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as preparation, thinking, and causal understanding required? Does intelligence require clearly duplicating the brain and its particular professors? Does it require feelings? [81]
Most AI scientists think strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be accomplished, but that today level of development is such that a date can not precisely be forecasted. [84] AI specialists' views on the feasibility of AGI wax and subside. Four polls conducted in 2012 and 2013 suggested that the mean price quote amongst experts for when they would be 50% positive AGI would show up was 2040 to 2050, depending on the survey, with the mean being 2081. Of the professionals, 16.5% addressed with "never" when asked the same question but with a 90% self-confidence instead. [85] [86] Further present AGI development factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong predisposition towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They examined 95 predictions made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers released a comprehensive examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it could fairly be considered as an early (yet still insufficient) version of an artificial general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of humans on the Torrance tests of innovative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of general intelligence has already been attained with frontier designs. They composed that reluctance to this view originates from 4 main reasons: a "healthy uncertainty about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "commitment to human (or biological) exceptionalism", or a "issue about the financial ramifications of AGI". [91]
2023 also marked the emergence of large multimodal models (big language models capable of processing or generating several modalities such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of models that "invest more time thinking before they respond". According to Mira Murati, this capability to believe before reacting represents a brand-new, extra paradigm. It improves model outputs by investing more computing power when generating the response, whereas the model scaling paradigm enhances outputs by increasing the model size, training data and training calculate power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the business had actually accomplished AGI, stating, "In my opinion, we have actually currently achieved AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than most human beings at many tasks." He also resolved criticisms that large language models (LLMs) simply follow predefined patterns, comparing their knowing process to the scientific technique of observing, assuming, and validating. These statements have actually sparked debate, as they depend on a broad and unconventional definition of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show impressive adaptability, they might not completely fulfill this standard. Notably, Kazemi's comments came quickly after OpenAI eliminated "AGI" from the regards to its collaboration with Microsoft, prompting speculation about the business's strategic intentions. [95]
Timescales
Progress in artificial intelligence has actually traditionally gone through periods of quick progress separated by durations when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to produce space for further development. [82] [98] [99] For example, the hardware readily available in the twentieth century was not enough to execute deep knowing, which requires big numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that price quotes of the time needed before a truly flexible AGI is developed vary from 10 years to over a century. As of 2007 [upgrade], the consensus in the AGI research neighborhood appeared to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI scientists have given a vast array of opinions on whether development will be this quick. A 2012 meta-analysis of 95 such viewpoints found a bias towards anticipating that the onset of AGI would occur within 16-26 years for modern and historic forecasts alike. That paper has been criticized for how it categorized viewpoints as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the standard technique used a weighted sum of ratings from different pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the existing deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly readily available and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old kid in very first grade. An adult concerns about 100 typically. Similar tests were performed in 2014, with the IQ rating reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model efficient in performing numerous diverse tasks without specific training. According to Gary Grossman in a VentureBeat post, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to comply with their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of performing more than 600 different jobs. [110]
In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, contending that it exhibited more general intelligence than previous AI models and demonstrated human-level performance in jobs spanning multiple domains, such as mathematics, coding, and law. This research study stimulated a dispute on whether GPT-4 could be thought about an early, insufficient version of synthetic general intelligence, emphasizing the requirement for additional exploration and assessment of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The concept that this stuff might really get smarter than individuals - a few individuals thought that, [...] But most individuals believed it was method off. And I thought it was method off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly said that "The progress in the last couple of years has been quite incredible", and that he sees no factor why it would decrease, anticipating AGI within a years or even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would be capable of passing any test a minimum of in addition to humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI worker, estimated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is thought about the most appealing course to AGI, [116] [117] whole brain emulation can function as an alternative technique. With entire brain simulation, a brain model is built by scanning and mapping a biological brain in detail, and after that copying and mimicing it on a computer system or another computational gadget. The simulation design must be adequately loyal to the initial, so that it behaves in practically the same method as the original brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study functions. It has been discussed in synthetic intelligence research study [103] as a method to strong AI. Neuroimaging technologies that might provide the needed detailed understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will appear on a similar timescale to the computing power required to imitate it.
Early estimates
For low-level brain simulation, a very powerful cluster of computers or GPUs would be needed, provided the huge amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, supporting by adulthood. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on an easy switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at numerous estimates for the hardware needed to equal the human brain and adopted a figure of 1016 computations per 2nd (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a measure utilized to rate current supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was accomplished in 2022.) He utilized this figure to predict the needed hardware would be offered sometime between 2015 and 2025, if the exponential growth in computer power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established a particularly in-depth and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The synthetic neuron model assumed by Kurzweil and used in lots of existing artificial neural network applications is simple compared with biological neurons. A brain simulation would likely need to record the detailed cellular behaviour of biological neurons, presently comprehended only in broad overview. The overhead introduced by full modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would require computational powers several orders of magnitude larger than Kurzweil's estimate. In addition, the quotes do not account for glial cells, which are known to contribute in cognitive processes. [125]
An essential criticism of the simulated brain method originates from embodied cognition theory which asserts that human embodiment is an important aspect of human intelligence and is essential to ground meaning. [126] [127] If this theory is proper, any totally functional brain model will require to incorporate more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, however it is unidentified whether this would suffice.
Philosophical viewpoint
"Strong AI" as defined in approach
In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: An expert system system can (just) imitate it believes and has a mind and awareness.
The first one he called "strong" since it makes a more powerful declaration: it assumes something special has happened to the device that goes beyond those capabilities that we can check. The behaviour of a "weak AI" device would be precisely identical to a "strong AI" machine, however the latter would likewise have subjective mindful experience. This usage is likewise typical in academic AI research and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level synthetic basic intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that awareness is required for human-level AGI. Academic philosophers such as Searle do not believe that holds true, and to most artificial intelligence scientists the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to know if it actually has mind - certainly, there would be no way to tell. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are 2 various things.
Consciousness
Consciousness can have different meanings, and some aspects play significant functions in science fiction and the principles of expert system:
Sentience (or "remarkable awareness"): The capability to "feel" understandings or feelings subjectively, as opposed to the capability to reason about understandings. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer solely to sensational awareness, which is approximately comparable to life. [132] Determining why and how subjective experience occurs is called the difficult issue of awareness. [133] Thomas Nagel described in 1974 that it "seems like" something to be conscious. If we are not mindful, then it doesn't feel like anything. Nagel uses the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had attained sentience, though this claim was widely challenged by other specialists. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, especially to be knowingly familiar with one's own thoughts. This is opposed to merely being the "topic of one's believed"-an os or debugger has the ability to be "conscious of itself" (that is, to represent itself in the very same way it represents whatever else)-but this is not what individuals usually imply when they utilize the term "self-awareness". [g]
These traits have a moral dimension. AI life would trigger issues of well-being and legal security, likewise to animals. [136] Other elements of awareness related to cognitive capabilities are also relevant to the idea of AI rights. [137] Determining how to incorporate innovative AI with existing legal and social frameworks is an emerging concern. [138]
Benefits
AGI could have a wide array of applications. If oriented towards such objectives, AGI could help reduce numerous problems worldwide such as cravings, poverty and illness. [139]
AGI could improve performance and effectiveness in many jobs. For example, in public health, AGI might speed up medical research study, notably against cancer. [140] It might look after the senior, [141] and equalize access to quick, premium medical diagnostics. It might offer fun, cheap and customized education. [141] The requirement to work to subsist might end up being obsolete if the wealth produced is correctly redistributed. [141] [142] This also raises the question of the place of people in a radically automated society.
AGI could also help to make logical decisions, and to anticipate and prevent disasters. It might likewise assist to profit of potentially catastrophic technologies such as nanotechnology or climate engineering, while avoiding the associated dangers. [143] If an AGI's main objective is to prevent existential disasters such as human extinction (which could be difficult if the Vulnerable World Hypothesis ends up being real), [144] it might take steps to significantly decrease the risks [143] while minimizing the impact of these procedures on our lifestyle.
Risks
Existential risks
AGI might represent numerous types of existential threat, which are risks that threaten "the premature termination of Earth-originating smart life or the long-term and extreme destruction of its capacity for fakenews.win desirable future advancement". [145] The risk of human extinction from AGI has actually been the subject of lots of arguments, however there is also the possibility that the development of AGI would lead to a permanently problematic future. Notably, it could be utilized to spread and protect the set of worths of whoever develops it. If humanity still has moral blind areas comparable to slavery in the past, AGI may irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI could assist in mass monitoring and indoctrination, which could be utilized to produce a stable repressive worldwide totalitarian routine. [147] [148] There is likewise a threat for the devices themselves. If devices that are sentient or otherwise worthy of moral consideration are mass produced in the future, participating in a civilizational course that forever neglects their welfare and interests might be an existential catastrophe. [149] [150] Considering just how much AGI could enhance humankind's future and aid minimize other existential dangers, Toby Ord calls these existential threats "an argument for continuing with due caution", not for "deserting AI". [147]
Risk of loss of control and human termination
The thesis that AI poses an existential risk for human beings, and that this risk needs more attention, is controversial however has been endorsed in 2023 by many public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, dealing with possible futures of incalculable advantages and risks, the specialists are definitely doing everything possible to guarantee the best result, right? Wrong. If a remarkable alien civilisation sent us a message stating, 'We'll arrive in a couple of years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The possible fate of humankind has sometimes been compared to the fate of gorillas threatened by human activities. The contrast mentions that greater intelligence allowed humanity to dominate gorillas, which are now susceptible in ways that they might not have expected. As an outcome, the gorilla has actually ended up being a threatened species, not out of malice, however merely as a security damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control humankind which we should be mindful not to anthropomorphize them and analyze their intents as we would for humans. He said that individuals will not be "clever sufficient to design super-intelligent makers, yet ridiculously foolish to the point of providing it moronic objectives without any safeguards". [155] On the other side, the idea of crucial merging suggests that almost whatever their objectives, intelligent representatives will have factors to attempt to endure and obtain more power as intermediary steps to achieving these objectives. Which this does not need having feelings. [156]
Many scholars who are concerned about existential danger supporter for more research into fixing the "control problem" to address the question: what types of safeguards, algorithms, or architectures can programmers carry out to increase the likelihood that their recursively-improving AI would continue to behave in a friendly, instead of devastating, manner after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might lead to a race to the bottom of safety precautions in order to launch products before competitors), [159] and using AI in weapon systems. [160]
The thesis that AI can pose existential risk also has critics. Skeptics normally state that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other issues associated with existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for many individuals outside of the technology industry, existing chatbots and LLMs are currently perceived as though they were AGI, causing further misconception and worry. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence changing an irrational belief in an omnipotent God. [163] Some researchers think that the communication campaigns on AI existential risk by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other industry leaders and scientists, issued a joint statement asserting that "Mitigating the danger of extinction from AI ought to be a worldwide priority together with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. labor force could have at least 10% of their work tasks affected by the introduction of LLMs, while around 19% of employees may see at least 50% of their jobs impacted". [166] [167] They consider workplace workers to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI might have a much better autonomy, ability to make choices, to interface with other computer tools, but likewise to control robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be redistributed: [142]
Everyone can delight in a life of elegant leisure if the machine-produced wealth is shared, or the majority of people can wind up badly poor if the machine-owners effectively lobby against wealth redistribution. Up until now, the trend seems to be towards the second choice, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will require federal governments to adopt a universal fundamental income. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain AI result AI security - Research location on making AI safe and useful AI alignment - AI conformance to the intended goal A.I. Rising - 2018 movie directed by Lazar Bodroža Artificial intelligence Automated maker knowing - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of expert system to play various video games Generative artificial intelligence - AI system efficient in producing content in response to triggers Human Brain Project - Scientific research study job Intelligence amplification - Use of infotech to enhance human intelligence (IA). Machine principles - Moral behaviours of manufactured makers. Moravec's paradox. Multi-task knowing - Solving numerous maker discovering jobs at the very same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or type of expert system. Transfer knowing - Artificial intelligence strategy. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specifically designed and optimized for expert system. Weak artificial intelligence - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the article Chinese space. ^ AI creator John McCarthy composes: "we can not yet characterize in general what type of computational procedures we wish to call intelligent. " [26] (For a discussion of some meanings of intelligence utilized by artificial intelligence scientists, see approach of synthetic intelligence.). ^ The Lighthill report specifically slammed AI's "grand goals" and led the taking apart of AI research study in England. [55] In the U.S., DARPA ended up being determined to money just "mission-oriented direct research study, instead of basic undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be a fantastic relief to the remainder of the workers in AI if the developers of new basic formalisms would reveal their hopes in a more safeguarded type than has actually sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a basic AI textbook: "The assertion that machines could potentially act wisely (or, maybe better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that makers that do so are actually believing (instead of simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to ensure that synthetic basic intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is creating synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were determined as being active in 2020. ^ a b c "AI timelines: What do experts in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton quits Google and warns of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can prevent the bad stars from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real threat is not AI itself but the way we release it. ^ "Impressed by artificial intelligence? Experts say AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential risks to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last development that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the risk of extinction from AI must be an international top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals alert of risk of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing machines that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no factor to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "maker intelligence with the complete variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on everybody to make sure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart characteristics is based on the topics covered by significant AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of tough exams both AI variations have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended checking an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software application engineers avoided the term expert system for fear of being viewed as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of device intelligence: Despite development in machine intelligence, artificial basic intelligence is still a major challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A study of skilled opinion. In Fundamental issues of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as wise as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI twilight zone between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, however the agreement is that it is not AGI. ... If nothing else, GPT-3 tells us there is a happy medium in between narrow and general AI. ^ Quach, Katyanna. "A developer built an AI chatbot using GPT-3 that helped a guy speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 tasks, from playing video games to controlling robotics", TechCrunch, archived from the initial on 16 June 2022, recovered 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could rival human intelligence in 'just a few years,' says CEO of Google's primary A.I. research lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI might pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in current research, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the company's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense outweigh benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, risks, methods (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security risk' to Australia, Senate inquiry says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of artificial intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The remarkable Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The remarkable Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI risk: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report warns". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk postured but expert system can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, warn scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator states huge tech is lying about AI extinction danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market effect capacity of large language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of workers could see their jobs affected by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal basic income because 'in the future, physical work will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Point of view, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer system programs that can fix problems and attain goals on the planet along with human beings. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, retrieved 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, wavedream.wiki Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system easy adequate to be understandable will not be made complex enough to behave smartly, while any system made complex enough to behave intelligently will be too made complex to understand." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead easy foolish. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from makers. For forum.pinoo.com.tr biological creatures, factor and function come from acting on the planet and experiencing the effects. Expert systems - disembodied, strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who intend to get abundant from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't rely on federal governments driven by project finance [from tech companies] to push back.' ... Marcus details the demands that residents ought to make of their governments and the tech business. They include openness on how AI systems work; payment for individuals if their data [are] utilized to train LLMs (big language model) s and the right to grant this use; and the ability to hold tech companies accountable for the damages they trigger by eliminating Section 230, imposing money penalites, and passing more stringent product liability laws ... Marcus also recommends ... that a new, AI-specific federal company, akin to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... suggests ... establish [ing] an expert licensing regime for engineers that would operate in a comparable way to medical licenses, malpractice matches, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers also swore to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stymied humans for decades, exposes the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has revealed that although NLP (natural-language processing) models are capable of unbelievable feats, their abilities are extremely much limited by the quantity of context they get. This [...] might trigger [problems] for researchers who intend to utilize them to do things such as evaluate ancient languages. In some cases, there are few historical records on long-gone civilizations to work as training data for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to generate fake videos identical from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we suggest reasonable videos produced utilizing expert system that actually trick individuals, then they hardly exist. The fakes aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited proof. Their role much better resembles that of animations, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to prevent humanizing machine-learning models utilized in scientific research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of synthetic basic intelligence are stymmied by the usual problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead authorities to ignore contradictory proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test however revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require real humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed unable to factor realistically and attempted to count on its vast database of ... realities originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful but unreliable. Rules-based systems can not deal with circumstances their programmers did not anticipate. Learning systems are restricted by the information on which they were trained. AI failures have currently caused catastrophe. Advanced auto-pilot functions in automobiles, although they perform well in some circumstances, have actually driven cars without cautioning into trucks, concrete barriers, and parked automobiles. In the incorrect situation, AI systems go from supersmart to superdumb in an immediate. When an opponent is trying to manipulate and hack an AI system, the risks are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new innovations however rely on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.