Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or goes beyond human cognitive capabilities throughout a wide variety of cognitive tasks. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly goes beyond human cognitive abilities. AGI is thought about one of the definitions of strong AI.
Creating AGI is a primary objective of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research study and development tasks across 37 nations. [4]
The timeline for attaining AGI remains a subject of continuous argument amongst researchers and professionals. As of 2023, some argue that it might be possible in years or years; others maintain it might take a century or longer; a minority think it might never be attained; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed issues about the rapid development towards AGI, iuridictum.pecina.cz recommending it might be accomplished quicker than lots of anticipate. [7]
There is dispute on the specific definition of AGI and relating to whether contemporary big language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical subject in science fiction and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many specialists on AI have actually stated that reducing the threat of human extinction postured by AGI should be a global top priority. [14] [15] Others discover the advancement of AGI to be too remote to provide such a danger. [16] [17]
Terminology
AGI is also understood as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some academic sources book the term "strong AI" for computer programs that experience life or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to resolve one particular problem but lacks basic cognitive capabilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the exact same sense as people. [a]
Related ideas include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical type of AGI that is far more typically intelligent than people, [23] while the concept of transformative AI associates with AI having a large influence on society, for instance, comparable to the farming or industrial transformation. [24]
A structure for orcz.com categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define five levels of AGI: emerging, proficient, specialist, virtuoso, and superhuman. For example, a qualified AGI is defined as an AI that surpasses 50% of skilled adults in a large range of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is likewise specified however with a threshold of 100%. They think about large language models like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. One of the leading proposals is the Turing test. However, there are other well-known meanings, and some scientists disagree with the more popular techniques. [b]
Intelligence qualities
Researchers usually hold that intelligence is required to do all of the following: [27]
factor, use technique, solve puzzles, and make judgments under unpredictability
represent understanding, including typical sense knowledge
strategy
discover
- communicate in natural language
- if essential, incorporate these abilities in conclusion of any offered objective
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and decision making) think about additional characteristics such as creativity (the ability to form unique mental images and principles) [28] and autonomy. [29]
Computer-based systems that exhibit a number of these capabilities exist (e.g. see computational creativity, automated reasoning, choice support group, robot, mariskamast.net evolutionary calculation, smart agent). There is debate about whether modern-day AI systems possess them to an adequate degree.
Physical qualities
Other capabilities are considered preferable in intelligent systems, as they might affect intelligence or help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and - the ability to act (e.g. relocation and control items, modification area to explore, and so on).
This includes the capability to discover and react to threat. [31]
Although the ability to sense (e.g. see, hear, and so on) and the ability to act (e.g. move and manipulate things, modification place to check out, etc) can be desirable for some intelligent systems, [30] these physical abilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) may already be or become AGI. Even from a less optimistic point of view on LLMs, there is no firm requirement for an AGI to have a human-like form; being a silicon-based computational system is adequate, offered it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has never been proscribed a particular physical personification and hence does not require a capability for locomotion or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to validate human-level AGI have been thought about, including: [33] [34]
The idea of the test is that the machine has to try and pretend to be a guy, by answering concerns put to it, and it will just pass if the pretence is fairly persuading. A substantial portion of a jury, who should not be skilled about devices, should be taken in by the pretence. [37]
AI-complete issues
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would require to carry out AGI, because the option is beyond the abilities of a purpose-specific algorithm. [47]
There are numerous problems that have been conjectured to need basic intelligence to solve in addition to humans. Examples consist of computer vision, natural language understanding, and handling unexpected situations while solving any real-world problem. [48] Even a particular job like translation requires a maker to read and compose in both languages, follow the author's argument (factor), comprehend the context (knowledge), and faithfully recreate the author's initial intent (social intelligence). All of these problems require to be fixed simultaneously in order to reach human-level maker efficiency.
However, a number of these tasks can now be performed by modern large language models. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on many benchmarks for checking out understanding and visual reasoning. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The first generation of AI scientists were encouraged that synthetic basic intelligence was possible and that it would exist in just a few decades. [51] AI leader Herbert A. Simon composed in 1965: "devices will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might produce by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the task of making HAL 9000 as sensible as possible according to the agreement predictions of the time. He stated in 1967, "Within a generation ... the issue of developing 'synthetic intelligence' will significantly be solved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar job, were directed at AGI.
However, in the early 1970s, it ended up being obvious that researchers had actually grossly ignored the trouble of the project. Funding companies became doubtful of AGI and put researchers under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI objectives like "carry on a table talk". [58] In response to this and the success of expert systems, both industry and government pumped money into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For the 2nd time in 20 years, AI scientists who anticipated the impending achievement of AGI had been mistaken. By the 1990s, AI researchers had a track record for making vain guarantees. They became hesitant to make predictions at all [d] and avoided reference of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI accomplished industrial success and academic respectability by concentrating on particular sub-problems where AI can produce verifiable outcomes and industrial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used extensively throughout the technology industry, and research in this vein is greatly funded in both academia and industry. As of 2018 [upgrade], advancement in this field was thought about an emerging pattern, and a mature stage was expected to be reached in more than 10 years. [64]
At the millenium, lots of traditional AI scientists [65] hoped that strong AI could be established by combining programs that solve different sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up route to artificial intelligence will one day satisfy the traditional top-down path more than half method, all set to offer the real-world competence and the commonsense understanding that has actually been so frustratingly evasive in reasoning programs. Fully smart devices will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is really just one practical route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this path (or vice versa) - nor is it clear why we ought to even attempt to reach such a level, given that it looks as if getting there would simply amount to uprooting our signs from their intrinsic meanings (therefore simply reducing ourselves to the functional equivalent of a programmable computer system). [66]
Modern artificial general intelligence research study
The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the capability to please goals in a large range of environments". [68] This type of AGI, characterized by the ability to maximise a mathematical definition of intelligence instead of display human-like behaviour, [69] was likewise called universal artificial intelligence. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor lecturers.
Since 2023 [update], a little number of computer system researchers are active in AGI research study, and numerous add to a series of AGI conferences. However, increasingly more researchers are interested in open-ended knowing, [76] [77] which is the concept of permitting AI to continually discover and innovate like humans do.
Feasibility
As of 2023, the development and potential accomplishment of AGI stays a topic of extreme dispute within the AI community. While traditional consensus held that AGI was a distant goal, recent developments have actually led some scientists and industry figures to claim that early forms of AGI might already exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a male can do". This forecast failed to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century since it would require "unforeseeable and essentially unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between contemporary computing and human-level artificial intelligence is as wide as the gulf in between current space flight and useful faster-than-light spaceflight. [80]
A further challenge is the lack of clearness in defining what intelligence involves. Does it require awareness? Must it display the capability to set goals as well as pursue them? Is it purely a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are centers such as planning, thinking, and causal understanding needed? Does intelligence need explicitly reproducing the brain and its specific professors? Does it require feelings? [81]
Most AI researchers believe strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is among those who believe human-level AI will be achieved, but that today level of development is such that a date can not properly be predicted. [84] AI experts' views on the expediency of AGI wax and subside. Four polls conducted in 2012 and 2013 suggested that the typical estimate amongst experts for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the professionals, 16.5% responded to with "never" when asked the same concern but with a 90% confidence rather. [85] [86] Further existing AGI development factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year timespan there is a strong predisposition towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They analyzed 95 predictions made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers released a detailed examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we think that it could reasonably be seen as an early (yet still incomplete) version of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 exceeds 99% of humans on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of basic intelligence has actually already been accomplished with frontier designs. They wrote that unwillingness to this view comes from 4 primary factors: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "commitment to human (or biological) exceptionalism", or a "concern about the economic implications of AGI". [91]
2023 likewise marked the development of large multimodal designs (big language designs capable of processing or generating several modalities such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of designs that "invest more time believing before they react". According to Mira Murati, this ability to think before reacting represents a brand-new, extra paradigm. It enhances model outputs by spending more computing power when producing the answer, whereas the model scaling paradigm enhances outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the company had attained AGI, mentioning, "In my viewpoint, we have actually already attained AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than most people at most tasks." He likewise resolved criticisms that big language designs (LLMs) simply follow predefined patterns, comparing their learning procedure to the scientific approach of observing, assuming, and validating. These declarations have sparked argument, as they count on a broad and unconventional meaning of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models demonstrate impressive versatility, they may not fully meet this requirement. Notably, Kazemi's remarks came quickly after OpenAI removed "AGI" from the terms of its partnership with Microsoft, triggering speculation about the business's strategic objectives. [95]
Timescales
Progress in expert system has traditionally gone through periods of quick development separated by periods when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to create area for more development. [82] [98] [99] For instance, the computer hardware readily available in the twentieth century was not enough to implement deep knowing, which needs large numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that quotes of the time required before a truly flexible AGI is built vary from 10 years to over a century. As of 2007 [upgrade], the consensus in the AGI research study community seemed to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have offered a broad range of viewpoints on whether development will be this quick. A 2012 meta-analysis of 95 such opinions discovered a predisposition towards forecasting that the start of AGI would take place within 16-26 years for modern-day and historical predictions alike. That paper has been criticized for how it categorized opinions as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, significantly much better than the second-best entry's rate of 26.3% (the standard technique used a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was related to as the initial ground-breaker of the current deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly available and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old child in first grade. An adult comes to about 100 usually. Similar tests were carried out in 2014, with the IQ rating reaching a maximum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in performing lots of diverse jobs without specific training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the exact same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to comply with their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of performing more than 600 different jobs. [110]
In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, competing that it displayed more basic intelligence than previous AI designs and showed human-level performance in jobs covering several domains, such as mathematics, coding, and law. This research study sparked a debate on whether GPT-4 might be thought about an early, insufficient version of synthetic basic intelligence, stressing the requirement for additional expedition and evaluation of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton specified that: [112]
The concept that this stuff could actually get smarter than people - a few individuals believed that, [...] But a lot of individuals believed it was way off. And I believed it was way off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly stated that "The progress in the last few years has actually been quite amazing", which he sees no reason why it would slow down, anticipating AGI within a years and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would be capable of passing any test a minimum of along with human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI worker, approximated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is considered the most promising course to AGI, [116] [117] entire brain emulation can function as an alternative approach. With entire brain simulation, a brain design is developed by scanning and mapping a biological brain in detail, and then copying and simulating it on a computer system or another computational gadget. The simulation model should be adequately devoted to the initial, so that it acts in almost the same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been talked about in expert system research [103] as an approach to strong AI. Neuroimaging technologies that could deliver the required detailed understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will become offered on a similar timescale to the computing power required to replicate it.
Early approximates
For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be required, provided the huge amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by adulthood. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon a simple switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various price quotes for the hardware needed to equate to the human brain and adopted a figure of 1016 computations per 2nd (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a procedure utilized to rate existing supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, attained in 2011, while 1018 was achieved in 2022.) He used this figure to forecast the essential hardware would be offered at some point between 2015 and 2025, if the exponential development in computer power at the time of composing continued.
Current research
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has established a particularly detailed and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The artificial neuron model assumed by Kurzweil and used in numerous existing artificial neural network implementations is basic compared to biological neurons. A brain simulation would likely need to catch the detailed cellular behaviour of biological nerve cells, currently comprehended only in broad outline. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would require computational powers a number of orders of magnitude larger than Kurzweil's quote. In addition, the quotes do not represent glial cells, which are understood to play a role in cognitive processes. [125]
A basic criticism of the simulated brain technique originates from embodied cognition theory which asserts that human embodiment is an essential aspect of human intelligence and is required to ground significance. [126] [127] If this theory is correct, any completely functional brain model will need to encompass more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, but it is unidentified whether this would suffice.
Philosophical point of view
"Strong AI" as specified in approach
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between 2 hypotheses about artificial intelligence: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "awareness". Weak AI hypothesis: An artificial intelligence system can (only) imitate it believes and has a mind and consciousness.
The very first one he called "strong" since it makes a more powerful declaration: it assumes something special has happened to the device that surpasses those capabilities that we can check. The behaviour of a "weak AI" machine would be precisely similar to a "strong AI" machine, however the latter would likewise have subjective mindful experience. This usage is also common in scholastic AI research and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to imply "human level synthetic general intelligence". [102] This is not the exact same as Searle's strong AI, unless it is assumed that awareness is essential for human-level AGI. Academic philosophers such as Searle do not believe that holds true, and to most expert system researchers the question is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to know if it really has mind - indeed, there would be no chance to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are 2 various things.
Consciousness
Consciousness can have various meanings, and some aspects play substantial roles in sci-fi and the ethics of artificial intelligence:
Sentience (or "incredible awareness"): The capability to "feel" understandings or feelings subjectively, as opposed to the ability to factor about perceptions. Some thinkers, such as David Chalmers, use the term "awareness" to refer specifically to remarkable awareness, which is roughly equivalent to life. [132] Determining why and how subjective experience develops is understood as the tough problem of awareness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be conscious. If we are not mindful, then it does not feel like anything. Nagel uses the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had actually attained sentience, though this claim was extensively challenged by other specialists. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, especially to be consciously aware of one's own thoughts. This is opposed to merely being the "topic of one's thought"-an os or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the very same way it represents everything else)-however this is not what people typically imply when they utilize the term "self-awareness". [g]
These traits have a moral measurement. AI life would generate concerns of welfare and legal security, likewise to animals. [136] Other elements of awareness associated to cognitive abilities are likewise appropriate to the idea of AI rights. [137] Finding out how to incorporate innovative AI with existing legal and social structures is an emergent concern. [138]
Benefits
AGI could have a large range of applications. If oriented towards such goals, AGI might help reduce different problems on the planet such as appetite, poverty and illness. [139]
AGI might enhance efficiency and effectiveness in the majority of tasks. For instance, in public health, AGI might speed up medical research, significantly against cancer. [140] It could look after the senior, [141] and democratize access to quick, top quality medical diagnostics. It might use enjoyable, cheap and customized education. [141] The requirement to work to subsist could end up being outdated if the wealth produced is appropriately redistributed. [141] [142] This also raises the question of the location of humans in a drastically automated society.
AGI might also assist to make logical choices, and to prepare for and prevent catastrophes. It could also assist to enjoy the benefits of potentially disastrous technologies such as nanotechnology or environment engineering, while preventing the associated dangers. [143] If an AGI's main objective is to prevent existential catastrophes such as human extinction (which could be hard if the Vulnerable World Hypothesis turns out to be true), [144] it might take procedures to dramatically minimize the threats [143] while lessening the impact of these procedures on our lifestyle.
Risks
Existential risks
AGI may represent numerous kinds of existential danger, which are risks that threaten "the early extinction of Earth-originating smart life or the long-term and extreme damage of its capacity for preferable future development". [145] The threat of human termination from AGI has been the topic of lots of disputes, but there is also the possibility that the advancement of AGI would result in a completely flawed future. Notably, it could be utilized to spread and maintain the set of values of whoever develops it. If mankind still has ethical blind areas comparable to slavery in the past, AGI might irreversibly entrench it, avoiding ethical development. [146] Furthermore, AGI could facilitate mass security and brainwashing, which could be used to create a steady repressive around the world totalitarian program. [147] [148] There is likewise a threat for the machines themselves. If devices that are sentient or otherwise worthy of moral factor to consider are mass developed in the future, taking part in a civilizational course that forever overlooks their well-being and interests could be an existential disaster. [149] [150] Considering just how much AGI might improve humankind's future and help minimize other existential threats, Toby Ord calls these existential dangers "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human termination
The thesis that AI postures an existential danger for humans, which this risk requires more attention, is questionable however has been backed in 2023 by numerous public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:
So, dealing with possible futures of enormous benefits and dangers, the professionals are undoubtedly doing everything possible to ensure the best outcome, right? Wrong. If a remarkable alien civilisation sent us a message stating, 'We'll arrive in a couple of decades,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is happening with AI. [153]
The potential fate of humanity has sometimes been compared to the fate of gorillas threatened by human activities. The comparison specifies that greater intelligence permitted humanity to dominate gorillas, which are now vulnerable in methods that they might not have anticipated. As a result, the gorilla has actually ended up being an endangered types, not out of malice, however just as a collateral damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control humankind and that we should take care not to anthropomorphize them and interpret their intents as we would for humans. He stated that individuals will not be "clever enough to develop super-intelligent devices, yet extremely dumb to the point of offering it moronic goals without any safeguards". [155] On the other side, the principle of crucial merging suggests that nearly whatever their goals, intelligent agents will have reasons to try to survive and acquire more power as intermediary actions to achieving these objectives. And that this does not need having emotions. [156]
Many scholars who are concerned about existential threat supporter for more research into solving the "control issue" to address the question: what kinds of safeguards, algorithms, or architectures can programmers implement to maximise the probability that their recursively-improving AI would continue to act in a friendly, instead of devastating, manner after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could cause a race to the bottom of safety precautions in order to launch products before competitors), [159] and using AI in weapon systems. [160]
The thesis that AI can pose existential risk likewise has critics. Skeptics typically state that AGI is not likely in the short-term, or that concerns about AGI sidetrack from other issues related to existing AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for lots of people outside of the technology market, existing chatbots and LLMs are already perceived as though they were AGI, causing more misconception and fear. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an unreasonable belief in an omnipotent God. [163] Some researchers think that the communication projects on AI existential risk by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulative capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and scientists, released a joint statement asserting that "Mitigating the threat of extinction from AI should be an international concern along with other societal-scale dangers such as pandemics and videochatforum.ro nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. workforce could have at least 10% of their work tasks impacted by the intro of LLMs, while around 19% of workers might see a minimum of 50% of their tasks affected". [166] [167] They consider office workers to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI could have a better autonomy, capability to make decisions, to interface with other computer system tools, but also to control robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend upon how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of glamorous leisure if the machine-produced wealth is shared, or many people can end up miserably bad if the machine-owners successfully lobby against wealth redistribution. Up until now, the trend appears to be toward the second alternative, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will need federal governments to adopt a universal standard earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain AI effect AI security - Research location on making AI safe and beneficial AI positioning - AI conformance to the desired goal A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated maker learning - Process of automating the application of maker knowing BRAIN Initiative - Collaborative public-private research study effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of expert system to play various games Generative expert system - AI system capable of generating content in reaction to prompts Human Brain Project - Scientific research study project Intelligence amplification - Use of info technology to augment human intelligence (IA). Machine ethics - Moral behaviours of man-made devices. Moravec's paradox. Multi-task learning - Solving multiple maker discovering jobs at the exact same time. Neural scaling law - Statistical law in device knowing. Outline of expert system - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or form of artificial intelligence. Transfer knowing - Artificial intelligence technique. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specially designed and optimized for synthetic intelligence. Weak artificial intelligence - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the post Chinese room. ^ AI creator John McCarthy composes: "we can not yet characterize in basic what sort of computational procedures we wish to call intelligent. " [26] (For a conversation of some meanings of intelligence used by artificial intelligence researchers, see approach of synthetic intelligence.). ^ The Lighthill report particularly slammed AI's "grandiose goals" and led the taking apart of AI research in England. [55] In the U.S., DARPA ended up being identified to fund just "mission-oriented direct research study, instead of basic undirected research study". [56] [57] ^ As AI founder John McCarthy composes "it would be an excellent relief to the rest of the employees in AI if the innovators of new general formalisms would reveal their hopes in a more protected kind than has actually sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a basic AI book: "The assertion that makers could potentially act smartly (or, possibly better, act as if they were smart) is called the 'weak AI' hypothesis by philosophers, and the assertion that makers that do so are actually thinking (instead of mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that synthetic general intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is creating artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were identified as being active in 2020. ^ a b c "AI timelines: What do specialists in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton stops Google and alerts of threat ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real risk is not AI itself but the way we release it. ^ "Impressed by synthetic intelligence? Experts state AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might posture existential dangers to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of termination from AI should be a global concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals warn of threat of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating machines that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no reason to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the full variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on all of us to ensure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart qualities is based on the subjects covered by major AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of hard examinations both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested checking an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software application engineers prevented the term synthetic intelligence for fear of being viewed as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of device intelligence: Despite development in maker intelligence, artificial basic intelligence is still a major obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not develop into a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic synthetic intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A study of skilled opinion. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as clever as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI golden zone between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, but the agreement is that it is not AGI. ... If nothing else, GPT-3 tells us there is a middle ground in between narrow and basic AI. ^ Quach, Katyanna. "A designer developed an AI chatbot utilizing GPT-3 that helped a man speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 jobs, from playing games to controlling robotics", TechCrunch, archived from the original on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might rival human intelligence in 'simply a couple of years,' says CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in current research, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer system may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program acts the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, dangers, strategies (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that people will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate inquiry says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The remarkable Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI risk: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report cautions". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk postured but expert system can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, alert researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator states big tech is lying about AI extinction danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early look at the labor market effect potential of big language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of workers could see their jobs impacted by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal basic earnings due to the fact that 'in the future, manual labor will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Point of view, archived from the initial on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer system programs that can solve problems and attain objectives on the planet along with human beings. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, recovered 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system easy adequate to be understandable will not be complicated enough to behave intelligently, while any system made complex enough to act smartly will be too complicated to understand." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead basic foolish. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from devices. For biological animals, factor and function originate from acting worldwide and experiencing the repercussions. Artificial intelligences - disembodied, strangers to blood, sweat, and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically anticipate that those who want to get rich from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't depend on governments driven by campaign financing contributions [from tech companies] to press back.' ... Marcus information the needs that residents ought to make of their governments and the tech companies. They consist of transparency on how AI systems work; payment for individuals if their data [are] utilized to train LLMs (large language model) s and the right to authorization to this use; and the ability to hold tech companies accountable for the harms they trigger by getting rid of Section 230, enforcing money penalites, and passing stricter item liability laws ... Marcus also recommends ... that a brand-new, AI-specific federal agency, akin to the FDA, the FCC, akropolistravel.com or the FTC, may supply the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... establish [ing] a professional licensing routine for engineers that would operate in a similar method to medical licenses, malpractice suits, and the Hippocratic oath in medicine. 'What if, like doctors,' she asks ..., 'AI engineers likewise pledged to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stumped humans for decades, exposes the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has revealed that although NLP (natural-language processing) models can extraordinary feats, their abilities are quite restricted by the amount of context they get. This [...] might trigger [problems] for scientists who want to utilize them to do things such as evaluate ancient languages. In some cases, there are few historical records on long-gone civilizations to act as training information for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to produce phony videos equivalent from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we suggest sensible videos produced utilizing expert system that in fact trick individuals, then they hardly exist. The fakes aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, classihub.in in basic, operating in our media as counterfeited proof. Their function much better looks like that of cartoons, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should prevent humanizing machine-learning designs used in scientific research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial basic intelligence are stymmied by the exact same old problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead authorities to disregard inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test however showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that need genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared unable to reason logically and attempted to depend on its vast database of ... realities obtained from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful however undependable. Rules-based systems can not handle scenarios their developers did not anticipate. Learning systems are limited by the data on which they were trained. AI failures have actually already led to disaster. Advanced auto-pilot features in vehicles, although they perform well in some situations, have actually driven cars without warning into trucks, concrete barriers, and parked cars. In the incorrect situation, AI systems go from supersmart to in an instant. When an opponent is attempting to control and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new innovations but count on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.